Optimization on diffeological spaces

نویسندگان

چکیده

Abstract On this poster, we present optimization techniques on diffeological spaces. Diffeological spaces firstly introduced by J.M. Souriau in the 1980s are a natural generalization of smooth manifolds. In order to generalize methods known manifolds spaces, define various objects like tangent space, Riemannian space as well gradient. addition give definition retraction. These necessary for formulating steepest descent method We and apply it an example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Tangent Bundle on Diffeological Spaces

We define a subcategory of the category of diffeological spaces, which contains smooth manifolds, the diffeomorphism subgroups and its coadjoint orbits. In these spaces we construct a tangent bundle, vector fields and a de Rham cohomology.

متن کامل

Some aspects of cosheaves on diffeological spaces

We define a notion of cosheaves on diffeological spaces by cosheaves on the site of plots. This provides a framework to describe diffeological objects such as internal tangent bundles, the Poincar'{e} groupoids, and furthermore, homology theories such as cubic homology in diffeology by the language of cosheaves. We show that every cosheaf on a diffeological space induces a cosheaf in terms of t...

متن کامل

The homotopy theory of diffeological spaces

Diffeological spaces are generalizations of smooth manifolds. In this paper, we study the homotopy theory of diffeological spaces. We begin by proving basic properties of the smooth homotopy groups that we will need later. Then we introduce the smooth singular simplicial set S(X) associated to a diffeological space X, and show that when S(X) is fibrant, it captures smooth homotopical properties...

متن کامل

Basic Forms and Orbit Spaces: a Diffeological Approach

If a Lie group acts on a manifold freely and properly, pulling back by the quotient map gives an isomorphism between the differential forms on the quotient manifold and the basic differential forms upstairs. We show that this result remains true for actions that are not necessarily free nor proper, as long as the identity component acts properly, where on the quotient space we take differential...

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings in applied mathematics & mechanics

سال: 2021

ISSN: ['1617-7061']

DOI: https://doi.org/10.1002/pamm.202100260